USHER: An algorithm for particle insertion in dense fluids

نویسندگان

  • R. Delgado-Buscalioni
  • P. V. Coveney
چکیده

The insertion of solvent particles in molecular dynamics simulations of complex fluids is required in many situations involving open systems, but this challenging task has been scarcely explored in the literature. We propose a simple and fast algorithm ~USHER! that inserts the new solvent particles at locations where the potential energy has the desired prespecified value. For instance, this value may be set equal to the system’s excess energy per particle in such a way that the inserted particles are energetically indistinguishable from the other particles present. During the search for the insertion site, the USHER algorithm uses a steepest-descent iterator with a displacement whose magnitude is adapted to the local features of the energy landscape. The only adjustable parameter in the algorithm is the maximum displacement, and we show that its optimal value can be extracted from an analysis of the structure of the potential energy landscape. We present insertion tests in periodic and nonperiodic systems filled with a Lennard-Jones fluid whose density ranges from moderate to high values. © 2003 American Institute of Physics. @DOI: 10.1063/1.1579475#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The FADE mass-stat: a technique for inserting or deleting particles in molecular dynamics simulations.

The emergence of new applications of molecular dynamics (MD) simulation calls for the development of mass-statting procedures that insert or delete particles on-the-fly. In this paper we present a new mass-stat which we term FADE, because it gradually "fades-in" (inserts) or "fades-out" (deletes) molecules over a short relaxation period within a MD simulation. FADE applies a time-weighted relax...

متن کامل

Energy controlled insertion of polar molecules in dense fluids.

We present a method to search low energy configurations of polar molecules in the complex potential energy surfaces associated with dense fluids. The search is done in the configurational space of the translational and rotational degrees of freedom of the molecule, combining steepest-descent and Newton-Raphson steps which embed information on the average sizes of the potential energy wells obta...

متن کامل

An Improved Particle Swarm Optimization for a Class of Capacitated Vehicle Routing Problems

Vehicle Routing Problem (VRP) is addressed to a class of problems for determining a set of vehicle routes, in which each vehicle departs from a given depot, serves a given set of customers, and returns back to the same depot. On the other hand, simultaneous delivery and pickup problems have drawn much attention in the past few years due to its high usage in real world cases. This study, therefo...

متن کامل

A New Tri-Parametrical Law of Corresponding States for Subcritical Dense Fluids

This article introduces a new tri-parameter law of corresponding states from the known regularities, namely the LIR and Zeno line for dense fluids (when Tz=Tc). Two of these parameters are the Zeno line parameters and the third parameter (the fluid parameter), has been obtained from the LIR, this parameter is solely dependent upon the fluid characteristics. The third parameter ca...

متن کامل

AN EXPERIMENTAL INVESTIGATION ON IMPROVING THE MEDIUM AND LATE-AGE COMPRESSIVE STRENGTHS OF CLASS G OIL WELL CEMENT

In this study, the effects of particle size distribution improvement and dense packing techniques on the 28- and 90-day compressive strengths of class G oil well cement have been investigated. It was observed that limited improvements in the particle size distribution of cement (regarding industrial possibilities) cannot result in a significant increase in 28- and 90-day compressive strengths. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003